

Application Note

Application Note

Document No.: AN1113

APM32F003x4x6 Hardware Development Guide

Version: V1.0

© Geehy Semiconductor Co., Ltd.

1 Introduction

This application note is a minimum design specification for system hardware of the APM32F003x4x6 series, including power supply scheme, clock source, reset mode, startup mode settings, and debugging management.

The detailed reference design drawing is also included in this document, including descriptions of main components, interfaces, and modes.

Contents

1	Introduction1
2	Power supply 3
2.1	Introduction
2.2	Power supply scheme4
2.3	Power Management and Reset5
3	Clock
3.1	External clock source7
4	Debugging interface (SW-DP)9
4.1	Debugging Pin Function Configuration9
4.2	IO status during reset and just after reset9
4.3	Recommended Debugging Interface Circuit10
5	Design Suggestions 10
5.1	PCB Stacking 10
5.2	Power Supply Design 11
5.3	Clock Design 11
5.4	I/O Design 12
5.5	EMC and EMI 12
5.6	Grounding 12
5.7	Reference Schematic Diagram Design 13
6	Revision history

2 Power supply

2.1 Introduction

The power supply is the foundation for stable operation of a system, with an operating voltage of $2.4 \sim 5.5$ V for the main power supply, and 1.5V power supply can be provided by the internal main voltage regulator and the low-power voltage regulator.

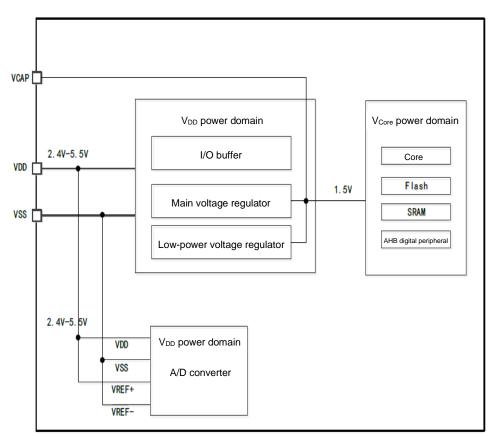


Figure 1 Power Supply Control Structure Block Diagram

2.1.1 V_{DD} power domain

The V_{DD}/V_{SS} pin can supply power to the internal main voltage regulator (MVR), internal low-power voltage regulator (LPVR), and I/O ports, within the voltage range of 2.4~5.5V.

2.1.2 V_{Core} field

The main voltage regulator and low-power voltage regulator together supply power to the core, FLASH, RAM, and digital peripherals, with a supply voltage of 1.5V.

2.2 Power supply scheme

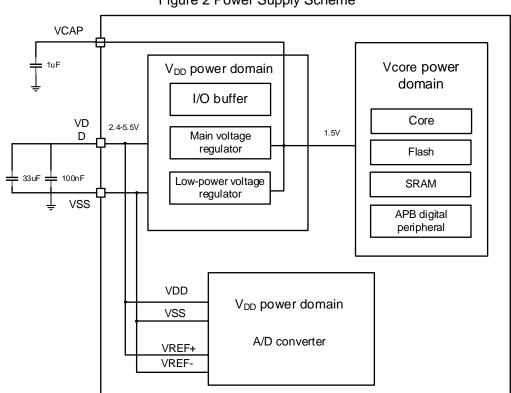


Figure 2 Power Supply Scheme

Pay attention to the power supply range of each power domain:

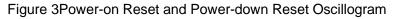
Table 1Power Supply Scheme

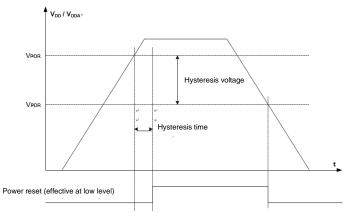
Name	Voltage range	Description
V _{DD}	2.4 ~ 5.5V	VDD directly supplies power to the IO port and the internal voltage regulator.
V _{core}	1.5V	1.5V power supply is provided to the core, Flash, and SRAM through the internal voltage regulator.

Where:

Table 2 Precautions for Power Domain

V _{DD}	V_{DD} must be connected to V_{DD} power supply of an external capacitor (a
	100nF ceramic capacitor $^{(1)}$ and a tantalum capacitor not less than 4.7 $\mu F).$
VCAP	The stability of the main voltage regulator is achieved by connecting the
	external capacitor C_{EXT} to the VCAP pin. When the voltage regulator is
	enabled, the pin VCAP must be connected to a ceramic capacitor with a
	rated capacitance of 1 μ F and low ESR ⁽¹⁾ .


(1) It is recommended to use the ceramic capacitors made of X7R



2.3 Power Management and Reset

2.3.1 Power-on reset and power-down reset (POR and PDR)

When the VDD is lower than the threshold voltage _{VPOR} and _{VPDR}, the chip will automatically remain in the reset state. The waveform diagrams of power-on reset and power-down reset are as follows. For POR, PDR, hysteresis voltage and hysteresis time, please refer to the *Datasheet*.

2.3.2 System reset

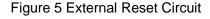
The system reset source is divided into external reset source and internal reset source.

Table 3 Reset Source		
External reset	Low level on NRST pin.	
source:		
	(1) Window watchdog termination count (WWDT reset)	
	(2) Independent watchdog termination count (IWDT reset)	
Internal reset	(3) Software reset (SW reset)	
source:	(4) Power-on reset (POR)/Power-down reset (PDR)	
	(5) CPU software reset	
	(6) EMC reset	

A system reset will occur when any of the above events occurs. Besides, the reset event source can be identified by viewing the reset flag bit in RCM_CSTS (control/status register).

2.3.1.1 System reset circuit

The reset source is used in the NRST pin, which remains low in reset process. The internal reset source generates a pulse with a delay of at least 20µs on the NRST pin through the


pulse generator, which causes the NRST to maintain the level and generate reset; the external reset source directly pulls down the NRST pin level to generate reset.

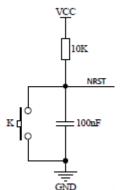
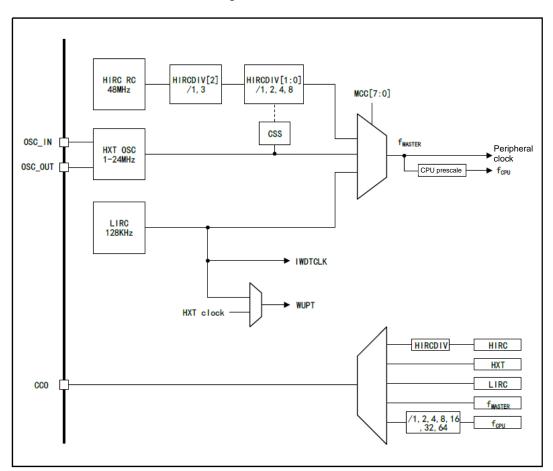

The system reset circuit is shown in Figure 5:

Figure 4 System Reset Circuit

Recommend external reset circuit


3 Clock

The clock sources of the entire system include HXT, HIRC, and LIRC. For the characteristics of the clock source, please refer to the relevant chapter of "Electrical Characteristics" in the datasheet.

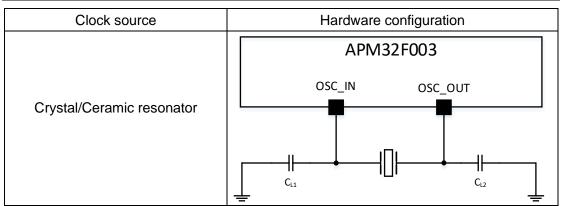
Clock tree:

Figure 6 Clock Tree

3.1 External clock source

The external clock signal is HXT (high-speed external clock signal).

There are two kinds of external clock sources:


- External clock of user
- External crystal/ceramic resonator

The hardware configuration of the two kinds of clock sources is shown in the figure below.

Clock source	Hardware configuration	
	APM32F003	
External clock	OSC_IN OSC_OUT	

Table 4 HXT Clock Source Hardware Configuration

(1) In order to reduce the distortion of clock output and shorten the startup stabilization time, the crystal/ceramic resonator and load capacitor must be as close to the oscillator pin as possible. The value of the matching capacitance (C_{L1} , C_{L2}) must be adjusted according to the selected oscillator.

(2) The load capacitor C_L follows the formula of: $C_L=C_{L1} \times C_{L2} / (C_{L1}+C_{L2}) + C_S$. C_S is relevant capacitance of PCB and MCU pins. The typical value is between 2pF and 10pF.

3.1.1 HXT high-speed external clock signal

HXT clock signal is generated by HXT external crystal/ceramic resonator and HXT external clock sources.

Name	Description	
	Provide clock to the MCU through OSC_IN pin.	
	The signal can be generated by ordinary function signal transmitter (in	
External clock course	debugging), crystal oscillator and other signal generators; the waveform	
External clock source	can be square wave, sine wave or triangle wave with 50% duty cycle,	
(HXT bypass)	and the maximum frequency is up to 24MHz.	
	In hardware connection, it must be connected to the OSC_IN pin and	
	the OSC_OUT pin must be suspended.	
	The clock is provided to MCU by the resonator, and the resonator	
	includes crystal resonator and ceramic resonator. The frequency range	
	is 1~24MHz.	
External envetal/agramia	OSC_IN, OSC_OUT is required to connect the resonator,	
External crystal/ceramic	and it can be turned on and off by setting the HXTEN bit in RCM_ECC	
resonator	in the clock control register.	
(HXT crystal)	Regarding the size of the external matching capacitor, please	
	refer to the formula: $C_{L1} = C_{L2} = 2^*(C_L - C_S)$, where C_S is the stray	
	capacitance of the PCB and MCU pins, and the typical value is 10pF.	
	When selecting an external high-speed crystal resonator, it is	

Name	Description
	recommended to select the one with a load capacitance of around 20pF,
	so that the external matching capacitors $^{\scriptscriptstyle(1)}C_{L1}$ and C_{L2} only need to
	have a capacitance value of 20pF, and the PCB should be as
	close as possible to the crystal oscillator pins.

(1) It is recommended to use the temperature compensation capacitors made of NPO (COG) for the matching capacitor of the crystal oscillator.

4 Debugging interface (SW-DP)

The product supports serial debugging interface (SWD).

Table 6 Debugging Interface

Name	Description
SW-DP	SW-DP interface provides 2-pin (data + clock) interface for AHB module.

4.1 Debugging Pin Function Configuration

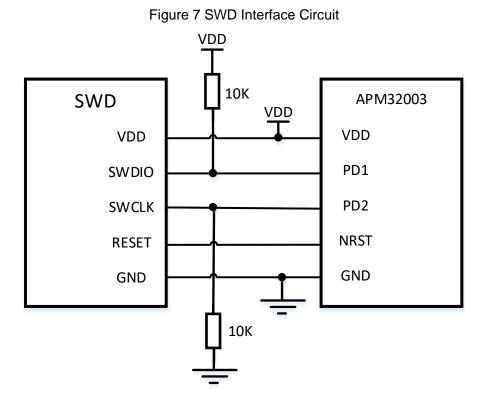
- Realize the on-line programming and debugging of the chip.
- Use KEIL/IAR and other software to implement on-line debugging, downloading and programming.
- Flexible implementation of production of bus-off programmer.

		I/O port assignment of SWD interface	
JTAGDIS	Configured as dedicated pin for debugging	PD1/SWDIO	PD2/SWCLK
0	SW-DP interface is enabled	SWDIO	SWCLK
1	SW-DP interface is disabled	GPIO	GPIO

Table 7 Pin Function Configuration

4.2 IO status during reset and just after reset

If the multiplexing function is not enabled during and just after GPIO reset, the I/O port will be configured as floating input mode, and in such case, the pull-up/pull-down resistor is disabled in input mode. After reset, all pins except for debugging interfaces PD1 and PD2 are in floating input mode. The debugging pins PD1 and PD2 are set as multiplexing function:



- PD2: SWCLK is set to pull-down mode;
- PD1: SWDIO is set to pull-up mode;

When the debugging function is disabled, it serves as an ordinary GPIO pin.

4.3 Recommended Debugging Interface Circuit

Recommended SWD interface reference design:

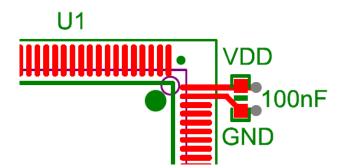
Note:

(1) The reference design for the SWD interface is to add an external pull-up resistor and pull-down resistor to the SWDIO and SWCLK pins, which can enhance the antiinterference ability of downloading and debugging. If these two pins are multiplexed for other functions, please evaluate the impact of the pull-up and pull-down resistors and make adjustments according to the actual situation.

5 Design Suggestions

5.1 PCB Stacking

• Number of layers: It is recommended to use the multi-layer design to ensure independent GND and power layers, which can better ensure signal integrity and enhance shielding effect. However, considering the costs, users can reduce the

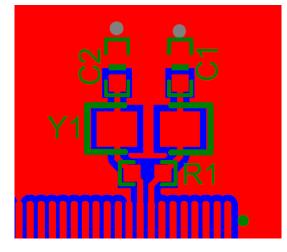

number of stacking layers while ensuring good grounding and power supply.

- Signal and formation: The signal layer should be adjacent to the formation. This helps to reduce the electromagnetic interference and the loop area of the signal path, and can serve as a reference plane for the signal.
- Power supply and formation: The power supply layer should be separated from the formation.

5.2 Power Supply Design

- Stable power input: Ensure stable power supply and filter the power noise.
- Decoupling capacitors: Place one or more 100nF decoupling capacitors at the VDD pin near the chip.

Figure 8 Recommended Power Pin Decoupling Capacitor Layout Design


 Power supply wiring: It is recommended that the power supply wiring should be wide and short enough to reduce the influence of parasitic parameters and the voltage drop.

5.3 Clock Design

- Crystal oscillator selection: Choose an appropriate crystal oscillator and ensure it meets the operating frequency and stability requirements of the MCU.
- Wiring suggestions: Clock signal wiring should be as short as possible and be away from strong interference signals such as high current and high-speed signal lines. It is recommended to use package processing to enhance the shielding effect.
- Layout suggestions: The crystal oscillator circuit should be placed close to the chip, and to reduce the interference, it is best to ensure a complete ground plane below the entire crystal oscillator circuit.

Figure 9 Recommended Clock Pin Layout Design

5.4 I/O Design

- I/O configuration: Correctly configure the modes of I/O ports, such as input, output, pull-up and pull-down, and open-drain mode.
- Protection: For externally connected I/O ports, consider adding the voltage protection (TVS tube) and series resistor.

5.5 EMC and EMI

- Layout: Consider the design of electromagnetic compatibility (EMC) and electromagnetic interference (EMI), and the layout should be reasonable. For example, keep the MCU away from high-power and strong interference sources, and consider how to reduce the loop area, etc.
- Shielding: Use shielding and reasonable grounding strategies for sensitive and high-speed circuits.

5.6 Grounding

- Single-point grounding: In low-frequency circuits or circuits with not high noise requirements, adopting single-point grounding can avoid formation of ground loop. In such case, all grounding points should be connected to a common grounding point, which is usually the negative pole of the power supply or some grounding plane on the circuit board.
- Multi-point grounding: In high-frequency circuits or high-current circuits, usually multi-point grounding is used. The grounding of each component or function module is directly connected to the nearest grounding plane, which can reduce the impedance of the ground wire, and reduce the noise and electromagnetic interference.

• Separation of analog from digital ground: If the MCU processes the analog and digital signals simultaneously, the analog ground and digital ground should be processed separately. This can be achieved by physically separating two ground planes and merging them at a certain point to connect them to the main ground, which can reduce the interference of digital noise with the analog signals.

5.7 Reference Schematic Diagram Design

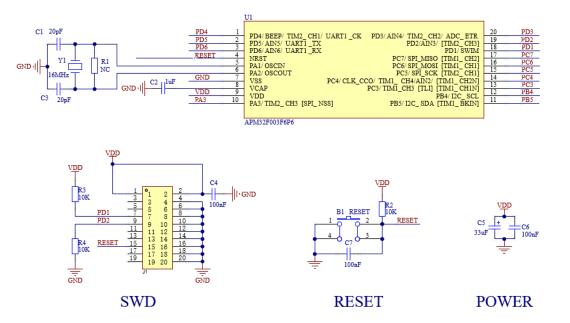


Figure 10 Reference Schematic Diagram

6 Revision history

Date	Version	Revision History
July, 2024	V1.0	New edition

Table 8 Document Revision History

Statement

This document is formulated and published by Geehy Semiconductor Co., Ltd. (hereinafter referred to as "Geehy"). The contents in this document are protected by laws and regulations of trademark, copyright and software copyright. Geehy reserves the right to make corrections and modifications to this document at any time. Read this document carefully before using Geehy products. Once you use the Geehy product, it means that you (hereinafter referred to as the "users") have known and accepted all the contents of this document. Users shall use the Geehy product in accordance with relevant laws and regulations and the requirements of this document.

1. Ownership

This document can only be used in connection with the corresponding chip products or software products provided by Geehy. Without the prior permission of Geehy, no unit or individual may copy, transcribe, modify, edit or disseminate all or part of the contents of this document for any reason or in any form.

The "极海" or "Geehy" words or graphics with "®" or "TM" in this document are trademarks of Geehy. Other product or service names displayed on Geehy products are the property of their respective owners.

2. No Intellectual Property License

Geehy owns all rights, ownership and intellectual property rights involved in this document.

Geehy shall not be deemed to grant the license or right of any intellectual property to users explicitly or implicitly due to the sale or distribution of Geehy products or this document.

If any third party's products, services or intellectual property are involved in this document, it shall not be deemed that Geehy authorizes users to use the aforesaid third party's products, services or intellectual property. Any information regarding the application of the product, Geehy hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party, unless otherwise agreed in sales order or sales contract.

3. Version Update

Users can obtain the latest document of the corresponding models when ordering Geehy products.

If the contents in this document are inconsistent with Geehy products, the agreement in the sales order or the sales contract shall prevail.

4. Information Reliability

The relevant data in this document are obtained from batch test by Geehy Laboratory or cooperative third-party testing organization. However, clerical errors in correction or errors caused by differences in testing environment may occur inevitably. Therefore, users should understand that Geehy does not bear any responsibility for such errors that may occur in this document. The relevant data in this document are only used to guide users as performance parameter reference and do not constitute Geehy's guarantee for any product performance.

Users shall select appropriate Geehy products according to their own needs, and effectively verify and test the applicability of Geehy products to confirm that Geehy products meet their own needs, corresponding standards, safety or other reliability requirements. If losses are caused to users due to user's failure to fully verify and test Geehy products, Geehy will not bear any responsibility.

5. Legality

USERS SHALL ABIDE BY ALL APPLICABLE LOCAL LAWS AND REGULATIONS WHEN USING THIS DOCUMENT AND THE MATCHING GEEHY PRODUCTS. USERS SHALL UNDERSTAND THAT THE PRODUCTS MAY BE RESTRICTED BY THE EXPORT, RE-EXPORT OR OTHER LAWS OF THE COUNTRIES OF THE PRODUCTS SUPPLIERS, GEEHY, GEEHY DISTRIBUTORS AND USERS. USERS (ON BEHALF OR ITSELF, SUBSIDIARIES AND AFFILIATED ENTERPRISES) SHALL AGREE AND PROMISE TO ABIDE BY ALL APPLICABLE LAWS AND REGULATIONS ON THE EXPORT AND RE-EXPORT OF GEEHY PRODUCTS AND/OR TECHNOLOGIES AND DIRECT PRODUCTS.

6. Disclaimer of Warranty

THIS DOCUMENT IS PROVIDED BY GEEHY "AS IS" AND THERE IS NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT

LIMITED TO, THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

GEEHY'S PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED FOR USE AS CRITICAL COMPONENTS IN MILITARY, LIFE-SUPPORT, POLLUTION CONTROL, OR HAZARDOUS SUBSTANCES MANAGEMENT SYSTEMS, NOR WHERE FAILURE COULD RESULT IN INJURY, DEATH, PROPERTY OR ENVIRONMENTAL DAMAGE.

IF THE PRODUCT IS NOT LABELED AS "AUTOMOTIVE GRADE," IT SHOULD NOT BE CONSIDERED SUITABLE FOR AUTOMOTIVE APPLICATIONS. GEEHY ASSUMES NO LIABILITY FOR THE USE BEYOND ITS SPECIFICATIONS OR GUIDELINES.

THE USER SHOULD ENSURE THAT THE APPLICATION OF THE PRODUCTS COMPLIES WITH ALL RELEVANT STANDARDS, INCLUDING BUT NOT LIMITED TO SAFETY, INFORMATION SECURITY, AND ENVIRONMENTAL REQUIREMENTS. THE USER ASSUMES FULL RESPONSIBILITY FOR THE SELECTION AND USE OF GEEHY PRODUCTS. GEEHY WILL BEAR NO RESPONSIBILITY FOR ANY DISPUTES ARISING FROM THE SUBSEQUENT DESIGN OR USE BY USERS.

7. Limitation of Liability

IN NO EVENT, UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL GEEHY OR ANY OTHER PARTY WHO PROVIDES THE DOCUMENT AND PRODUCTS "AS IS", BE LIABLE FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE DOCUMENT AND PRODUCTS (INCLUDING BUT NOT LIMITED TO LOSSES OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY USERS OR THIRD PARTIES). THIS COVERS POTENTIAL DAMAGES TO PERSONAL SAFETY, PROPERTY, OR THE ENVIRONMENT, FOR WHICH GEEHY WILL NOT BE RESPONSIBLE.

8. Scope of Application

The information in this document replaces the information provided in all previous versions of the document.

© 2024 Geehy Semiconductor Co., Ltd. - All Rights Reserved

Geehy Semiconductor Co., Ltd. &+86 756 6299999 @www.geehy.com 🖂 contact@geehy.com